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A D O U B L E - D U A L  C H A R A C T E R I Z A T I O N  OF 
S E P A R A B L E  B A N A C H  S P A C E S  C O N T A I N I N G  I j 

BY 

E. ODELL AND H. P. ROSENTHAL t 

ABSTRACT 

It is proved that a separable Banach space B contains a subspace isomorphic 
to l ~ if (and only if) there exists an element in B**, the double-dual of B, which 
is not a weak* limit of a sequence of elements in B. Consequently B contains 
an isomorph of l ~ if (and only if) the cardinality of B** is greater than that of 
the continuum. 

1. Introduct ion 

Our  ma in  resu l t  is as  fo l lows :  

MAIN THEOREM. A separable Banach space B contains a subspace isomorphic 

to l ~ if (and only if) there exists an element G in B**, the double dual of  B, so 

that there is no sequence (b . )  in B with the property that [(bn ) ---> G (f) for all [ in 

B*, the dual of  B. 

S u p p o s e  tha t  B is s epa rab l e .  A s imple  c a r d i n a l i t y  a r g u m e n t  s h o w s  tha t  the  

h y p o t h e s e s  a p p l y  p r o v i d e d  tha t  the  c a r d i n a l i t y  of  B**  is l a rger  than  tha t  of  the  

c o n t i n u u m .  On  the  o t h e r  hand ,  s ince  ca rd  (l ~)** = 2 c, the  H a h n - B a n a c h  t h e o r e m  

s h o w e s  tha t  if B c o n t a i n s  an i s o m o r p h  of  l ' ,  then  ca rd  B**  = 2 c. A l so ,  no 

e l e m e n t  of  ( l~)**\l '  is a weak*  l imit  of  a s e q u e n c e  of  e l e m e n t s  of  l ' ,  so  the  

" o n l y  i f"  a s s e r t i o n  is i m m e d i a t e .  I t  is p r o v e d  in [12] tha t  the  h y p o t h e s e s  o f  the  

Main  T h e o r e m  a p p l y  p r o v i d e d  the re  ex i s t s  a b o u n d e d  s e q u e n c e  in B**  wi th  no 

w e a k * - c o n v e r g e n t  s u b s e q u e n c e .  The  l a t t e r  gene ra l i z e s  the  f u n d a m e n t a l  resu l t  

of  [11]: a B a n a c h  s p a c e  c o n t a i n s  an  i s o m o r p h  of  l ~ if and  on ly  if c o n t a i n s  a 

b o u n d e d  s e q u e n c e  wi th  no w e a k - C a u c h y  s u b s e q u e n c e .  T h e s e  resu l t s  m a y  be  

s u m m a r i z e d  as  fo l lows :  

Let B be a separable Banach space. Then the following five assertions are 

equivalent : 
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(1) B contains no isomorph of 1 I. 

(2) Every element of  B** is a weak* limit of a sequence in B. 

(3) Card B**=  card B. 

(4) Every bounded sequence in B has a weak-Cauchy subsequence. 

(5) Every bounded sequence in B ** has a weak*-convergent subsequence. 

James has constructed a separable Banach space B with B* non-separable, 

such that B contains no isomorph of 11 [6] (see [3] for other examples). Thus 

James' example, together with the equivalence of (1) and (4), answers the 

following question of Banach in the negative (see the last question on page 243 

of [2]): if B is separable and B* is non-separable, does B contain a bounded 

sequence with no weak-Cauchy subsequence? Actually, prior to the discovery 

of the results of [I 1], Charles Stegall established that James' example satisfied 

properties (2)-(5). It seems quite surprising that all five properties are equival- 

ent in the general case. 

Of course James' example shows the falsehood of a natural conjecture. 

However, the above results show that if B is separable and B* is sufficiently 

non-separable (so that any of (2)-(5) are violated), then B indeed contains 11. 

We refer the reader to [12] for a summary of the currently known characteriza- 

tions of Banach spaces containing 1 i. The characterizations given above differ 

from the ones known prior to [l l] in that the Banach space I x itself does not 

appear in the hypotheses. The techniques of f1 l] are combinatorial in nature. 
The arguments of the present paper and [ 12], on the other hand, are in the main 

topological: they turn heavily on the Baire category theorem and especially the 

following remarkable result published by Baire in 1889 [1]: 

THE BAIRE CHARACTERIZATION THEOREM. Let K be a non-empty compact met- 

ric space and f a real-valued function defined on K. Then f belongs to the first 

Baire class on K (i.e. f is a point-wise limit of a sequence of continuous 

functions on K)  if and only if for every non-empty closed subset M of  K, r im  

has a point of continuity relative to the topological space M. 

The "only if" assertion is a common exercise in most beginning graduate 

courses in analysis. However, it is the "if" assertion which we use; see pp. 

288-289 of [5] for an elegant exposition. 

REMARK. The Baire characterization theorem actually holds for a much 

wider class of topological spaces K. The following three hypotheses are 
adequate: 
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(1) K is normal. 

(2) Every  closed non-empty subset of K is of the second category in itself. 

(3) K has no strictly descending transfinite sequence of closed subsets (i.e., 

there is no family {K~ : a  < oJt} of closed subsets of K, indexed by the first 

uncountable ordinal ~o~, with K,,CK~ for  all/3 < a < ~o;). ;a 

Thus, the theorem holds for  any complete separable metric space K or any 

compact  Hausdorff  space K satisfying (3). 

2. Proof of the main result 

The case of complex Banach spaces follows from the case of real ones (see 

[11] and also [4]), so we restrict our attention to real spaces only. Our main 

result follows easily f rom the three lemmas which follow, a proposition in [11], 

and the Baire characterization theorem. We shall first show the deduction of 

our Main Theorem from these ingredients. Let  B and G be as in the statement 

of the main theorem, and let K denote the unit-ball of B* in its weak* topology. 

K is compact  metrizable; Lemma 1 yields G[K does not belong to the first 

Baire class on K. By the Baire characterization theorem, there is a closed 

non-empty subset M of K such that G[M has no points of continuity. By 

Lemma 2, there is a closed non-empty subset L of M, and real numbers r, 8 

with 8 > 0, satisfying (*) of Lemma 2. Now suppose IIGII = 1; by Goldstine's  

theorem, there is a net in the unit ball of B which converges weak* to B. 

Consequently GIL is in the closure of the subset ~3 of continuous functions on 

L defined by: cg = {g E C(L) :  there is a b in B with Ilblf--< 1 and g(x) = x(b) for  

all x E L }. By our Lemma 3 and Proposition 4 of [ 11 ], there is a sequence (gj) in 

~d independent enough to be equivalent to the usual basis of 11 in the sup-norm 

on L (see the Remark following the statement of Lemma 3). Now simply 

choose (b,)  in the unit ball of B with gj(x) = x(bD for  all j and x in L. Then the 

closed linear span of the b~'s is the desired subspace of B which is isomorphic 

to 1 ~. 

We now proceed to the three lemmas and their proofs.  We first need the 

DEFINITION. An element of the double dual X** of a Banach space X is 

called a Baire-1 member of X** provided it is the weak* (i.e. X*) limit of a 

sequence of elements of X. The set of all Baire-1 elements of X** shall be 

denoted ~ ; (X) .  

~ ; ( X )  was introduced by McWiUiams in [8];* he used the notation K(X). 

Suppose K is a compact  Hausdorff  space. As observed by McWilliams, if 

* See note added in proof. 
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X = C(K) ,  then the set of bounded first-Bake class functions on K may be 
identified with ~ , (X)  (where the Baire-1, or first Bake class functions on K, are 

those which are equal to a point-wise limit of a sequence of continuous 

functions on K) .  Indeed, regard K as being canonically imbedded in X*; the 

map [ ~ f l K  assigns to each 8aire-1 element [ of X**, a bounded Baire-1 

function on K. If, conversely, g is a bounded Baire-I function on K, then there 

is a sequence (g,) of continuous functions converging point-wise to g. By 

suitably truncating, we can assume that limn [[gn [[~ = fig [[®. Thus, if /~ is a 

regular signed finite Borel measure on K, we have that fgndl~ ~ fgdl~, by the 

bounded convergence theorem. Identifying X* with the space of all such Ix by 

the Riesz representation theorem, we thus easily obtain that the above map is a 

surjective isometry. 

Our first lemma follows easily from a theorem of Choquet ([13]; see also pp. 

100-105 of [14]). We prefer, however, to give a self-contained argument, rather 

different from the one in [14], which in fact  can be used to deduce Choquet 's 

theorem. 

LEMMA 1. Let X be a Banach space and K denote the closed unit ball of X*  

in its weak* topology. Then f E X** is a Baire- 1 member of X** if (and only 

if) f[K is a Baire- 1 function on K. 

We first need a simple sublemma. For Banach spaces A CB, we use the 

notation A ~ = {f ~ B* : f ( a )  = 0 for all a ~ A }. 

SUBLEMMA. Let X be a subspace of the Banach space B. Identify X** with 

the subspace X ±1 of B ** and let G E X** be a Baire- 1 member orB**. Then G 

is a Baire-1 member of  X**; in fact, if [[GI] = 1, then there is a sequence of 

elements of X of norm one which converges weak* to G. 

PROOF. Let bn --~ G weak* with bn in B for all n and assume [[ G [[ = 1. We 

need only show that d(Sx, co{bN, bN+,, ...}) = 0 for all N(Sx  denotes the closed 

unit ball of X;  coS the closed convex hull of a set S, and d(A, S) the distance 

between two subsets A and S of B). For then we can choose sequences (xn) in 

Sx and (/~,) in B, the /~  's being "far-out"  convex combinations of the b, 's, with 

Ilxn -/~n 11----}0. S ince/~  ~ G B*, we have that xn ~ GB*  also; so x. ~ G X *  by 

the Hahn-Banach theorem. 

Now the geometrical form of the Hahn-Banach theorem asserts that if two 

convex sets in a locally convex space are a positive distance apart, then they 

may be strictly separated by a continuous linear functional (see p. 118 of [7]). 

(Convex sets E and F are said to be a "positive distance apart" if there is a 

neighborhood U of the origin with (E + U) N F = 0 ;  this obviously coincides 
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with the metric notion in case the overlying space is Fr6chet.) Consequently, if 

for some N, d(Sx, co{bN, b~+,,...})>O, there is an f E B *  so that 

By Goldstine's theorem, 

Sup/(x) < inf f(bD. 
x E S x  j ~ N  

IGff) sup If(x)l < inff(bD _-< limf(b,) = Off), 
xESx j~N  j ~  

a contradiction. • 

REMARK. Our proof of this Sublemma immediately gives the following 

result: Let D be a convex subset of a Banach space X, f E ~ ( X ) ,  and suppose f 
is in the weak* closure olD. Then there exists a sequence in D which converges 
weak* to [. 

PROOF OF LEMMA 1. Let f E X** be such that f IK is a Baire-I function on K. 

It suffices to prove that [ ~ ~,(X) under the assumption that X = C(fl) for 

some compact Hausdorff space fL For, once this is done, we may choose an f~ 

(e.g. K itself) and an into-isometry T: X--~ C(f~). Letting E denote the unit 

ball of C(f~)*, we have that T*IE is a continuous map of E onto K, by the 

Hahn-Banach theorem (where T* denotes the adjoint of the map T). It follows 

that T**f is a Baire-1 function on E, for T**f = fo T*; so choosing h, E C(K) 
with h,---)f pointwise, h, o T*--~[o T* pointwise on E. Thus we obtain that 

T**f E ~,(C(fl)). But T**f E(TX)±I; hence by the Sublemma, T**fE 
~,(TX),  whence [ E ~ ( X ) .  

We now assume that X = C(lq) for some compact Hausdorff space lq. Then 

the result of Choquet's mentioned above implies that f E ~,(X). Alternatively, 
we argue as follows: 

We identify X* with M(12), the space of all regular signed Borel measures on 

fL For/z ~ M(Iq), let supp/~ denote the set of all x E f l ,  so that I ~ I(q/) > 0 for 

every open neighborhood 0//of x ; of course supp/z is a closed subset of O. For 

S a closed subset of f~, let ~ (S)  denote the set of all probability measures 

/~ E M(O) so that supp tt CS;  then ~(S)  is a weak* closed subset of K. Our 

strategy is to show that if [ ~  ~,(X),  then there exists a t t  so t h a t / I ~ ( S )  has 

no points of continuity in ~(S) ,  where /~ E ~ ( f l )  and S =  supp/z. This 

contradicts the assumption that [ is a Baire-1 function on K, for the "only if" 

part of the Baire characterization theorem holds on arbitrary compact Haus- 

dorff spaces. Toward this end, we observe that the following sets are weak* 

dense in ~(S):  ~d(S), the set of all purely atomic members of ~(S) ;  and ~, ,  
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where ~ ,  denotes the set of all ;t E ~(11), so that ;t is absolutely continuous 

with respect  to /z  (notation:)t  < /x) .  Indeed, if Y = ~ ( S )  or Y = ~ , ,  then Y is 

convex and Ilfll  = s u p p l y  Iffd,, I for all [ E C(S) ;  hence Y is weak*-dense in 

~ ( S )  by the Hahn-Banach theorem. 

Let  us regard 1) as being canonically imbedded in K. Then f l l~  is a Baire-1 

function on fl;  it follows that defining g E X** by g(/z) = fd ( to )d /z  (to) for  all 

p. E M(fl) ,  then g E ~ I (X)  and hence h = [ -  g is a Baire-1 function when 

restricted to K. We need only show that h = 0; our definition of h shows that 

(1) h (/a.) = 0 for  all/~ E ~ (~q). 

Now suppose that h ~ 0. Since every /x  @ M(I))  is a difference of  multiples of 

elements of 3~(fl), there is a u E ~(1)) with h(v) ~ 0; by multiplying h by - 1 if 

necessary,  we may assume that h ( v ) > 0 .  Let  Z denote the space of all 

)t E M(I~) with )t ~ v; we identify Z with L l(v) by the Radon-Nikodym 

theorem. Now h IZ is a bounded linear functional on Z ;  hence, by the Riesz 

representat ion theorem, there is a bounded Borel-measurable function tO so 

that 

(2) h (A) = ftOdA for  all A E Z. 

In particular, h(v )=f todv  > 0 ,  hence fto÷dv > 0 ,  where to+ denotes the 

positive part of tO. Now choose a positive number c so that v ( E ) >  0, whe~'e 

E = {to E ~:  tO(to) => c}. It follows that if A E ~'(1~) is such that A ( -  E )  = 0, 

then 

(3) ftodA = fEtodA >= c. 

Now let /x E ~ ( f l )  be defined by 

/ ~ ( B )  = 
u(B O E)  

v (E)  

for  all Borel sets B. It follows from (2) and (3) that 

(4) h ( h ) - > c  for all h ~ .  

We have now reached our goal. Let  S = supp/~. Then h => c on a dense 

subset of ~ ( S ) ,  namely ~ , ( S ) ,  by (4); h = 0 on another  dense subset of ~ ( S ) ,  

namely ~a(S) ,  by (1); hence h I ~ ( S )  has no points of continuity in ~ ( S ) ,  

contradicting the fact that h is a Baire-1 function on K. • 

In the following remarks, let X and K be as in Lemma 1. 
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1. Let X = C([0, 1]) and [ ~ X**. Lemma 1 shows that if [ is a Baire-1 

function on K, then f may be identified with a Baire-1 function on [0, 1]; 

precisely, 

f(g)=fto.,jfdlx forall /z EM([0,1]). 

This is an immediate consequence of Choquet's theorem mentioned above. 

An example of Choquet (see pp. 104-105 of [14]) yields the following: There 

exists an f ~ X** so that f is in the 2nd-Baire class on K, yet f cannot be 

identified with a Borel-measurable function on [0, I]. We define f by f ( t t ) =  

tz, ([0, 1]), where for any measure/z E M([0,1],/x, denotes the singular part of tt 

with respect to Lebesgue measure m. (Part of our proof of Lemma 1 boils down 

to the fact that f is not a Baire-1 function on K.) It's obvious that f cannot be 

identified with a Borel-measurable function on [0, 1] since f(m ) = 0 yet f(tt ) = 1 

for all /x E P~([0, 1]). Now for each n, define the function f. on K by 

f.(tt)=sup{fq~dtt:4~ C([O, 1]), O<-4~<-I and f~ek(t)dm(t)<l}. 

f, is Baire-1 on K;  indeed, f, is lower-semi-continuous, being the supremum of 

a family of continuous functions on K. Then .f(tt)= l im,~ . f=( / z ) - f , ( - /x ) ;  

hence [ is a point-wise limit of a sequence of Baire-1 functions, so .f is Baire-2 
on K. 

2. Since ~ , (K) ,  the space of all bounded real-valued functions on K of the 

first Baire-class, is a complete Banach space; and ~,(X) may be identified with 

~ , (K)  t3 X 11, we obtain McWilliams' result [8] that ~ , ( X ) i s  norm-closed in 

X**. The essential ingredient in the proof that ~ , (X) is complete, is already 
contained in otrr proof of the sublemma; the Hahn-Banach argument replaces 

the more classical truncation argument. On the other hand, McWilliams 

showed in [8] that the "in fact" assertion of the sublemma follows from the 
assumption that G E ~,(X).  

3. One may introduce higher Baire-classes of members of X** as follows: for 

tr a limit ordinal, let ~ ( X )  = U . < ~ . ( X ) ;  for general a, let ~a+,(X) equal the 

set of elements of X** which are equal to a weak* limit of a sequence of 

elements of ~ (X). Put Go(X) = X where X is regarded as being contained in 

X**. These were introduced by McWilliams m [10];' as he observed there, in 

the case where X = C(S) for some compact Hausdorff space S, ~ ( X )  may be 

identified with ~ ( S ) ,  the Banach space of all bounded functions on S of the 

a th Baire-class. However, the analogue of the sublemma fails in the context of 

these higher Baire-classes. Indeed, let X and [ be as in the example in Remark 

* See note added in proof.  
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1. Let  T: X--> C(K)  be the natural isometry. Then f ~  ~ a ( X )  for any a < to~, 

yet T**f ~ ~2(C(K)). Hence  ~a(TX)  ~ (TX) ±~ n ~ ( C ( K ) )  for  any ordinal 

a -> 2. Of course, ~2(X) is norm-closed. McWilliams has exhibited in [9] a 

space X so that ~z(X)  is not norm-closed. Hence also for this 

X, ~2(TX) ~ (TX)  ±± n ~ ( C ( K ) ) .  

Our next  result applies the Baire category theorem to show that if a function 

on a compact  Hausdorff  space has no points of continuity, then there is a 

subset of the space where the function is badly discontinuous; in particular, its 

relative oscillation at all points is absolutely bounded away from zero. 

LEMMA 2. Let K be a non-empty compact Hausdorff space and f a bounded 

real-valued function on K having no points of continuity. Then there is a closed 

non-empty subset L of K and real numbers r, 8 with 8 > 0 so that : 

(*) For every non-empty relatively open subset U of L, there are y 

and z in U with f ( y )  > r + ~ and f ( z )  < r. 

PROOF. For  each positive integer n, let A. equal the set of all x in K so that, 

if U is a neighborhood of x, there are y ,z  in U with f ( y ) - f ( z ) >  1/n. Since f 

has no points of continuity,  K = U 7-~A.. By definition the An's are all closed, 

so by the Baire category theorem some A~o has non-empty interior, Uo. Let  

Ko = t.]-0 and 8 = I/no. We now have that, for any non-empty relatively open 

subset U of Ko, U n U0 is a non-empty open subset of Ko, and hence there 

exist y and z in U w i t h / ( y )  - f (z )  > 8. Now let ( r . ) i .  ~ be an enumerat ion Of the 

rationals and for each n set B.  equal to the set of all x in Ko so that, if U is a 

neighborhood of x, there are y ,z  in U n Ko with f (z)  < rn and r. + 8 < f ( y ) .  

Since (*) holds for  every  non-empty open subset of Ko, Ko = U 7-~B.. Again, 

all the Bn's are closed by definition, so a second application of the category 

theorem implies B., has non-empty interior V for some n~. Then, putting L = 

and r = r.,, we have that (*) holds. (We have also incidentally obtained that L 

may be chosen equal to the closure of an open subset of K.) • 

Our next  result gives the final step in the production of our 1 L sequence.  We 

recall that a sequence (A.,Bn)~_~ of pairs of subsets of some set, is called 

independent  provided A. A B. = O for all n, and for any two disjoint finite 

subsets F~ and F2 of the positive integers, 

N A . n  N B.~O. 
n E F  I n E F  2 

LEMMA 3. Let f, L, r, and 8 satisfy the conclusion of Lemma 2. Let ~ be a 

bounded subset of the continuous functions on L and assume that f is in the 
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closure of  ~ in the topology of  pointwise convergence. Then there exists a 

sequence (g.) of  elements of  ~ so that putting A ,  = {x E L : g.  (x)  > r + 8 } and 

B~ = {x E L : g~ (x) < r} for all n, then (A~, B~) is independent. 

REMARK. The hypotheses imply that L is a perfect  set such that for  any 

e > 0  and A~,...,A~ in L, there is a g in ~3 with l g ( A , ) - [ ( A , ) l < e  for  all 

1 <i<-_k. If (g.) satisfies the conclusion, then by Proposition 4 of [ l l ] ,  the 

closed linear span of the g. ' s ,  in the sup norm, is isomorphic to 11; in fact,  for  

any k and real numbers q , . . . , c k ,  

sup E c,gj(x ) = 2 ~' I cj I" 

PROOF OF LEMMA 3. Choose Y l, y2 in L so that f(YO > r + 8 and f(y2) < r. 

Then choose g. in ~d so that g,(yt) > r + 8 and gl(y2) < r. Let  n > 1 and assume 

n ~=~ e,A~# 0 for  all choices of signs g l , ' ' ' , g , - I  have been chosen so that .=1 

e~ = +- 1, where 7/A~ = A~ if 7/ = + l, ~A, = Bi if 77 = - 1, and the A ,  B~'s are as 

defined in the statement of the lemma. For  each such choice of signs 

e = ( e l , " ' , e . - ~ ) ,  nT2~e~A, is a non-empty open set in L and we may pick 

y~, y~ in n 7-~le,A, so that f(y~) > r + ~ and f(y~) < r. Again we may choose g. 

in ~3 so that g , ( y ~ ) >  r + 8 and g , ( y ~ ) <  r for all 2 n-' choices of e. It follows 

that n ~=le~A~# O for all choices of el ; the sequence (g~)T=, thus constructed 

satisfies the conclusion of the lemma. • 

This completes the proof  of our main result. It is known that its conclusion 

fails for non-separable spaces in general. Indeed, if F is an uncountable set and 

B -- co(F), then B contains no isomorph of I ' ,  yet ~ j ( B )  may be identified with 

the proper  subset of I®(F) = (Co(F)** consisting of all functions which vanish off 

a countable subset of F. 

REMARK. It follows from our Main Theorem and the work of Choquet  that, 

if X is separable and does not contain an isomorph of 1 i, then every bounded 

to* closed convex subset A of X* is the norm closed convex hull of the set of 

its extreme points, E. Indeed, if x*  E A \ c o ( E ) ,  then there is an f E X * *  so 

that [ ( x * ) > s u p ~ J ( e ) .  But this is impossible, for  there is a probability 

measure ~t on A so that I ~ ( A \ E ) = 0  and 

f(x*)= f, fd x = f 
(see Sections 3 and 12 of [14]). 
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