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A DOUBLE-DUAL CHARACTERIZATION OF
SEPARABLE BANACH SPACES CONTAINING !’

BY
E. ODELL anp H. P. ROSENTHAL'

ABSTRACT

It is proved that a separable Banach space B contains a subspace isomorphic
to ' if (and only if) there exists an element in B**, the double-dual of B, which
is not a weak™ limit of a sequence of elements in B. Consequently B contains
an isomorph of /' if (and only if) the cardinality of B** is greater than that of
the continuum.

1. Introduction
Our main result is as follows:

MAIN THEOREM. A separable Banach space B contains a subspace isomorphic
to I' if (and only if) there exists an element G in B**, the double dual of B, so
that there is no sequence (b,) in B with the property that f(b.) — G(f) for all f in
B*, the dual of B.

Suppose that B is separable. A simple cardinality argument shows that the
hypotheses apply provided that the cardinality of B ** is larger than that of the
continuum. On the other hand, since card ({')** = 2°, the Hahn-Banach theorem
showes that if B contains an isomorph of [', then card B**=2°, Also, no
element of (I)**\I' is a weak* limit of a sequence of elements of !', so the
“only if”’ assertion is immediate. It is proved in [12] that the hypotheses of the
Main Theorem apply provided there exists a bounded sequence in B** with no
weak*-convergent subsequence. The latter generalizes the fundamental result
of [11]: a Banach space contains an isomorph of /' if and only if contains a
bounded sequence with no weak-Cauchy subsequence. These results may be
summarized as follows:

Let B be a separable Banach space. Then the following five assertions are
equivalent :
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(1) B contains no isomorph of l'.

(2) Every element of B** is a weak* limit of a sequence in B.

(3) Card B** = card B.

(4) Every bounded sequence in B has a weak-Cauchy subsequence.

(5) Every bounded sequence in B** has a weak *-convergent subsequence.

James has constructed a separable Banach space B with B* non-separable,
such that B contains no isomorph of /' [6] (see [3] for other examples). Thus
James’ example, together with the equivalence of (1) and (4), answers the
following question of Banach in the negative (see the last question on page 243
of [2]): if B is separable and B* is non-separable, does B contain a bounded
sequence with no weak-Cauchy subsequence? Actually, prior to the discovery
of the results of [11], Charles Stegall established that James’ example satisfied
properties (2)—(5). It seems quite surprising that all five properties are equival-
ent in the general case.

Of course James’ example shows the falsehood of a natural conjecture.
However, the above results show that if B is separable and B* is sufficiently
non-separable (so that any of (2)-(5) are violated), then B indeed contains ['.
We refer the reader to [12] for a summary of the currently known characteriza-
tions of Banach spaces containing !'. The characterizations given above differ
from the ones known prior to [11] in that the Banach space [’ itself does not
appear in the hypotheses. The techniques of [11] are combinatorial in nature.
The arguments of the present paper and [12], on the other hand, are in the main
topological: they turn heavily on the Baire category theorem and especially the
following remarkable result published by Baire in 1889 [1]:

THE BAIRE CHARACTERIZATION THEOREM. Let K be a non-empty compact met -
ric space and f a real-valued function defined on K. Then f belongs to the first
Baire class on K (i.e. f is a point-wise limit of a sequence of continuous
functions on K) if and only if for every non-empty closed subset M of K, f|M
has a point of continuity relative to the topological space M.

The “‘only if’” assertion is a common exercise in most beginning graduate
courses in analysis. However, it is the “if”’ assertion which we use; see pp.
288-289 of [S5] for an elegant exposition.

RemARK. The Baire characterization theorem actually holds for a much
wider class of topological spaces K. The following three hypotheses are
adequate:
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(1) K is normal.

(2) Every closed non-empty subset of K is of the second category in itself.

(3) K has no strictly descending transfinite sequence of closed subsets (i.e.,
there is no family {K. : @ < w} of closed subsets of K, indexed by the first
uncountable ordinal w,, with KagKa for all B <a < wy).
Thus, the theorem holds for any complete separable metric space K or any
compact Hausdorff space K satisfying (3).

2. Proof of the main result

The case of complex Banach spaces follows from the case of real ones (see
[11] and also [4]), so we restrict our attention to real spaces only. Our main
result follows easily from the three lemmas which follow, a proposition in [11],
and the Baire characterization theorem. We shall first show the deduction of
our Main Theorem from these ingredients. Let B and G be as in the statement
of the main theorem, and let K denote the unit-ball of B * in its weak* topology.
K is compact metrizable; Lemma 1 yields G|K does not belong to the first
Baire class on K. By the Baire characterization theorem, there is a closed
non-empty subset M of K such that G|M has no points of continuity. By
Lemma 2, there is a closed non-empty subset L of M, and real numbers r, 8
with & > 0, satisfying (*) of Lemma 2. Now suppose |G| = 1; by Goldstine’s
theorem, there is a net in the unit ball of B which converges weak* to B.
Consequently G|L is in the closure of the subset ¥ of continuous functions on
L defined by: 4 ={g € C(L): thereisa b in B with|[b|=1and g(x) = x(b) for
all x € L}. By our Lemma 3 and Proposition 4 of [11], there is a sequence (g;) in
% independent enough to be equivalent to the usual basis of ! in the sup-norm
on L (see the Remark following the statement of Lemma 3). Now simply
choose (b, ) in the unit ball of B with g;(x) = x(b;) for all j and x in L. Then the
closed linear span of the b,’s is the desired subspace of B which is isomorphic
to I,

We now proceed to the three lemmas and their proofs. We first need the

DeriNiTION.  An element of the double dual X** of a Banach space X is
called a Baire-1 member of X** provided it is the weak* (i.e. X*) limit of a
sequence of elements of X. The set of all Baire-1 elements of X** shall be
denoted B.(X).

RB,(X) was introduced by McWilliams in [8];" he used the notation K(X).
Suppose K is a compact Hausdorff space. As observed by McWilliams, if

* See note added in proof.
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X = C(K), then the set of bounded first-Baire class functions on K may be
identified with 98,(X) (where the Baire-1, or first Baire class functions on K, are
those which are equal to a point-wise limit of a sequence of continuous
functions on K). Indeed, regard K as being canonically imbedded in X*; the
map f— f|K assigns to each Baire-1 element f of X**, a bounded Baire-1
function on K. If, conversely, g is a bounded Baire-1 function on K, then there
is a sequence (g.) of continuous functions converging point-wise to g. By
suitably truncating, we can assume that lim,||g. |- =]g|l.. Thus, if u is a
regular signed finite Borel measure on K, we have that f[g.du — fgdu, by the
bounded convergence theorem. Identifying X* with the space of all such p by
the Riesz representation theorem, we thus easily obtain that the above map is a
surjective isometry.

Our first lemma follows easily from a theorem of Choquet ({13]; see also pp.
100-105 of [14]). We prefer, however, to give a self-contained argument, rather
different from the one in [14], which in fact can be used to deduce Choquet’s
theorem.

LemMa 1. Let X be a Banach space and K denote the closed unit ball of X*
in its weak* topology. Then f € X** is a Baire-1 member of X** if (and only
if) fIK is a Baire-1 function on K.

We first need a simple sublemma. For Banach spaces A CB, we use the
notation A*={f € B*.f(a) =0 for all a € A}.

SuBLEMMA. Let X be a subspace of the Banach space B. Identify X** with
the subspace X** of B** and let G € X** be a Baire-1 member of B**. Then G
is a Baire-1 member of X**; in fact, if |G| = 1, then there is a sequence of
elements of X of norm one which converges weak* to G.

Proor. Let b, — G weak* with b, in B for all n and assume |G| =1. We
need only show that d(Sx,co{bn,bn+1, -} =0 for all N (Sx denotes the closed
unit ball of X; coS the closed convex hull of a set S, and d(A, S) the distance
between two subsets A and S of B). For then we can choose sequences (x,) in
Sx and (b.) in B, the b,’s being “far-out” convex combinations of the b,’s, with
%« — b, | 0. Since b, — G B*, we have that x, — G B* also; so x, = G X* by
the Hahn-Banach theorem.

Now the geometrical form of the Hahn-Banach theorem asserts that if two
convex sets in a locally convex space are a positive distance apart, then they
may be strictly separated by a continuous linear functional (see p. 118 of [7]).
(Convex sets E and F are said to be a *‘positive distance apart” if there is a
neighborhood U of the origin with (E + U) N F = ; this obviously coincides
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with the metric notion in case the overlying space is Fréchet.) Consequently, if
for some N, d(Sx, co{bn,bn+1, -} >0, there is an f € B* so that

Sup f(x) < ingf(bj).

By Goldstine’s theorem,

|G| = SUSPlf(X)| < inflf(bj)é gimf(b;)= G,
xESx j= —o
a contradiction. B

ReMARK. Our proof of this Sublemma immediately gives the following
result: Let D be a convex subset of a Banach space X, f € B.(X), and suppose f
is in the weak * closure of D. Then there exists a sequence in D which converges
weak* to f.

ProoF oF LEMMA 1. Let f € X** be such that f| K is a Baire-1 function on K.
It suffices to prove that f € %B,(X) under the assumption that X = C(Q) for
some compact Hausdorff space (). For, once this is done, we may choose an ()
(e.g. K itself) and an into-isometry T: X — C(Q)). Letting E denote the unit
ball of C(Q2)*, we have that T*|E is a continuous map of E onto K, by the
Hahn-Banach theorem (where T* denotes the adjoint of the map T). It follows
that T**f is a Baire-1 function on E, for T**f = fo T*; so choosing h, € C(K)
with h, — f pointwise, h, o T*— fo T* pointwise on E. Thus we obtain that
T**f e B(C). But T**fe (TX)'*; hence by the Sublemma, T**fe
B(TX), whence f € B(X).

We now assume that X = C(Q) for some compact Hausdorff space Q. Then
the result of Choquet’s mentioned above implies that f € %,(X). Alternatively,
we argue as follows:

We identify X* with M(£2), the space of all regular signed Borel measures on
Q. For u € M(Q)), let supp . denote the set of all x € Q, so that | |(U) > 0 for
every open neighborhood % of x; of course supp u is a closed subset of . For
S a closed subset of Q, let #(S) denote the set of all probability measures
1 € M(€Q) so that supp u CS; then P(S) is a weak* closed subset of K. Our
strategy is to show that if f& %B,(X), then there exists a u so that f|P(S) has
no points of continuity in P(S), where u € #(Q) and S = suppu. This
contradicts the assumption that f is a Baire-1 function on K, for the “only if”
part of the Baire characterization theorem holds on arbitrary compact Haus-
dorff spaces. Toward this end, we observe that the following sets are weak*
dense in P(S): P4(S), the set of all purely atomic members of #(S); and 2.,
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where %, denotes the set of all A € (), so that A is absolutely continuous
with respect to u (notation: A <€ ). Indeed, if Y = P4(S)or Y = 2,, then Y is
convex and ||f|l = sup.ev | ffdv | for all f € C(S); hence Y is weak*-dense in
P?(S) by the Hahn-Banach theorem.

Let us regard () as being canonically imbedded in K. Then f|Q is a Baire-1
function on Q; it follows that defining g € X** by g(u) = faof (w)du (w) for all
uw €M), then g € B«(X) and hence h =f—g is a Baire-1 function when
restricted to K. We need only show that h = 0; our definition of & shows that

(N h(uw)=0forall u € P,(}).

Now suppose that & # 0. Since every u € M(Q)) is a difference of multiples of
elements of 2 (), there is a v € () with h(v) # 0; by multiplying h by — 1 if
necessary, we may assume that h(v)>0. Let Z denote the space of all
A EM() with A <v; we identify Z with L'(v) by the Radon-Nikodym
theorem. Now h |Z is a bounded linear functional on Z; hence, by the Riesz
representation theorem, there is a bounded Borel-measurable function ¢ so
that

2) h(A)=fddr forallx € Z.

In particular, h(v) = f¢pdv >0, hence [¢"dv >0, where ¢* denotes the
positive part of ¢. Now choose a positive number ¢ so that v(E) >0, where
E ={w €Q: ¢(w)=c}. It follows that if A € P(£2) is such that A(~E)=0,
then

3) JodA = [edpd) = c.
Now let n € P(£)) be defined by

_v(BNE)

un(B) == B

for all Borel sets B. It follows from (2) and (3) that
4 h(A)=c for all A EP.

We have now reached our goal. Let S =suppu. Then 2 =c¢ on a dense
subset of ?(S), namely 2,.(S), by (4); A = 0 on another dense subset of 2(S),
namely 24(S), by (1); hence h|P(S) has no points of continuity in 2(S),
contradicting the fact that k is a Baire-1 function on K. [ ]

In the following remarks, let X and K be as in Lemma 1.
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1. Let X=C(0,1]) and f € X**, Lemma 1 shows that if f is a Baire-1
function on K, then f may be identified with a Baire-1 function on {0, 1];

precisely,
f(u)=fonfdu forall u € M([0,1)).

This is an immediate consequence of Choquet’s theorem mentioned above.
An example of Choquet (see pp. 104-105 of [14]) yields the following: There
exists an f € X** so that f is in the 2nd-Baire class on K, yet f cannot be
identified with a Borel-measurable function on [0, 1]. We define f by f(i) =
s ([0, 1]), where for any measure & € M([0,1],u. denotes the singular part of u
with respect to Lebesgue measure m. (Part of our proof of Lemma 1 boils down
to the fact that f is not a Baire-1 function on K.) It’s obvious that f cannot be
identified with a Borel-measurable function on [0, 1] since f(m) =0 yet f(u) =1
for all & € P,([0, 1]). Now for each n, define the function f, on K by

fa(u) = sup {fd)du:quC([O,l]), 0=¢=1 and fé¢(t)dm(t)<;1~}.

f» is Baire-1 on K; indeed, f. is lower-semi-continuous, being the supremum of
a family of continuous functions on K. Then f(u) = lim,_.f.(u)—fi(—p);
hence f is a point-wise limit of a sequence of Baire-1 functions, so f is Baire-2
on K.

2. Since $.,(K), the space of all bounded real-valued functions on K of the
first Baire-class, is a complete Banach space; and #,(X) may be identified with
B(K)N X**, we obtain McWilliams’ result [8] that %B,(X) is norm-closed in
X**_ The essential ingredient in the proof that %,(X) is complete, is already
contained in our proof of the sublemma; the Hahn-Banach argument replaces
the more classical truncation argument. On the other hand, McWilliams
showed in [8] that the “in fact” assertion of the sublemma follows from the
assumption that G € 3,(X).

3. One may introduce higher Baire-classes of members of X ** as follows: for
a a limit ordinal, let B.(X) = U,<.%.(X); for general a, let $...(X) equal the
set of elements of X** which are equal to a weak* limit of a sequence of
elements of B, (X). Put B«(X) = X where X is regarded as being contained in
X**_ These were introduced by McWilliams 1n [10];" as he observed there, in
the case where X = C(S) for some compact Hausdorff space S, 8. (X) may be
identified with %.(S), the Banach space of all bounded functions on S of the
ath Baire-class. However, the analogue of the sublemma fails in the context of
these higher Baire-classes. Indeed, let X and f be as in the example in Remark

' See note added in proof.
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1. Let T: X — C(K) be the natural isometry. Then f& &,(X) for any a < w,,
yet T**f € B,(C(K)). Hence B,(TX) #(TX)** N B.(C(K)) for any ordinal
a =2. Of course, B(X) is norm-closed. McWilliams has exhibited in [9] a
space X so that %xX) is not norm-closed. Hence also for this
X, BATX) #(TX)" 0 BALC(K)).

Our next result applies the Baire category theorem to show that if a function
on a compact Hausdorff space has no points of continuity, then there is a
subset of the space where the function is badly discontinuous; in particular, its
relative oscillation at all points is absolutely bounded away from zero.

LeEmMA 2. Let K be a non-empty compact Hausdorff space and f a bounded
real-valued function on K having no points of continuity. Then there is a closed
non-empty subset L of K and real numbers r,8 with § >0 so that:
(*) For every non-empty relatively open subset U of L, there are y

and z in U with f(y)>r+68 and f(z)<r.

Proor. For each positive integer n, let A, equal the set of all x in K so that,
if U is a neighborhood of x, there are y,z in U with f(y)— f(z) > 1/n. Since f
has no points of continuity, K = U, .,A. By definition the A,’s are all closed,
so by the Baire category theorem some A,, has non-empty interior, U,. Let
Ko= U, and 8 = 1/n,. We now have that, for any non-empty relatively open
subset U of K,, U N U, is a non-empty open subset of Ko, and hence there
exist y and z in U with f(y)— f(z) > 8. Now let ()7 -, be an enumeration of the
rationals and for each n set B, equal to the set of all x in K, so that, if U is a
neighborhood of x, there are y,z in U N K, with f(z)<r. and r, +8 < f(y).
Since (*) holds for every non-empty open subset of Ko, Ko= U »-(B. Again,
all the B,’s are closed by definition, so a second application of the category
theorem implies B,, has non-empty interior V for some n,. Then, putting L = V
and r = r,,, we have that (*) holds. (We have also incidentally obtained that L
may be chosen equal to the closure of an open subset of K.) [ ]

Our next result gives the final step in the production of our I'-sequence. We
recall that a sequence (A., B.),-: of pairs of subsets of some set, is called
independent provided A, N B, =& for all n, and for any two disjoint finite
subsets F, and F, of the positive integers,

N A. N N B.#3Q.

nEF, nEF;

LemMma 3. Let f,L,r,and 6 satisfy the conclusion of Lemma 2. Let 4 be a
bounded subset of the continuous functions on L and assume that f is in the



Vol. 20, 1975 BANACH SPACES CONTAINING /' 383

closure of 4 in the topology of pointwise convergence. Then there exists a
sequence (g.) of elements of ¢ so that putting A, ={x €L: g.(x)>r + 8} and
B, ={x €L: g.(x)<r} for all n, then (A., B,) is independent.

Remark. The hypotheses imply that L is a perfect set such that for any
e>0and A, -, A in L, there is a g in ¢ with.|g(A)—f(A)|<e for all
1=i =k If (g.) satisfies the conclusion, then by Proposition 4 of [11], the
closed linear span of the g.’s, in the sup norm, is isomorphic to !'; in fact, for
any k and real numbers ¢y, - - ,cCk,

8
> cigi(x) éiz | il

sup
x€L

Proor oF LEMMA 3. Choose y,,y, in L so that f(y,)>r +8 and f(y)<r.
Then choose g, in 9 so that g,(y;) >r + 8 and g:«(y.) <r. Let n > 1 and assume
g1, *,8.—1 have been chosen so that N7 5'gAi# D for all choices of signs
& = =1, where nA; = A; if n = +1,7A; = B; if n = — 1, and the A;, B;’s are as
defined in the statement of the lemma. For each such choice of signs
€ =(e1,"**,€n-1), N2 & Ai is a non-empty open set in L and we may pick
y$, ¥3 in N7Z A so that f(yi)>r + 8 and f(y3) <r. Again we may choose g»
in 4 so that g.(y5)>r+ 8 and g.(y5) <r for all 2"7' choices of . It follows
that N ,gA; #Z < for all choices of &;; the sequence (g;)i-: thus constructed
satisfies the conclusion of the lemma. B

This completes the proof of our main result. It is known that its conclusion
fails for non-separable spaces in general. Indeed, if I' is an uncountable set and
B = ¢, then B contains no isomorph of I, yet %,(B) may be identified with
the proper subset of I°(I’) = (c«(T)** consisting of all functions which vanish off
a countable subset of T'.

ReMark. It follows from our Main Theorem and the work of Choquet that,
if X is separable and does not contain an isomorph of /', then every bounded
o* closed convex subset A of X* is the norm closed convex hull of the set of
its extreme points, E. Indeed, if x* € A \co(E), then there is an f € X** so
that f(x*)>sup.cef(e). But this is impossible, for there is a probability
measure u on A so that u(A\E)=0 and

f(x*)=fAfdu =f£fdp,
(see Sections 3 and 12 of [14]).
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